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a b s t r a c t

This paper describes a new approach in order to formulate well-posed time-domain damping
models able to represent various frequency domain profiles of damping properties. The
novelty of this approach is to represent the behavior law of a given material directly in a
discrete-time framework as a digital filter, which is synthesized for each material from a
discrete set of frequency-domain data such as complex modulus through an optimization
process. A key point is the addition of specific constraints to this process in order to guarantee
stability, causality and verification of thermodynamics second law when transposing the
resulting discrete-time behavior law into the time domain. Thus, this method offers a
framework which is particularly suitable for time-domain simulations in structural dynamics
and acoustics for a wide range of materials (polymers, wood, foam, etc.), allowing to control
and even reduce the distortion effects induced by time-discretization schemes on the
frequency response of continuous-time behavior laws.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Damping plays a major role in vibration of structures because of its huge influence on various characteristics of dynamical
response and radiated acoustic field [1,2]. A good understanding of this phenomenon is of importance to achieve multiple goals
ranging from the attenuation of noise and vibrations [3] to the improvement of efficiency regarding radiated sound fields, e.g. in
audio transducers or musical instruments. In this context, the study and prediction of transient vibroacoustic response generated
by structures under impulse-type excitation is a major field of interest which requires a fine description of damping. One may find
various applications in transportation acoustics, e.g. in railways industry when studying impact noise generated by wheel–rail
contact [4] or in building and room acoustics through the concept of auralization [5]. Another major area of application is related to
the concept of sound synthesis by means of physical modeling [6] and its applications in the acoustics of musical instruments
[7–9], where psychoacoustical studies have highlighted the major role played by damping on the perception of sounds [10].

For a given material, damping is often characterized in the frequency domain from experimental measurement of the
complex modulus En or loss factor η, that may be obtained using various techniques including viscoanalyzers. Such results
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generally exhibit frequency behaviors which differ a lot depending on the type of observed material and on external
conditions like temperature and hygrometry (see e.g. some experimental results for a wide range of damping materials in
[11]). This leads to a wide range of frequency-domain damping models (see e.g. [12]), which may not be directly transferable
to the time domain.

On the other hand, time-domain formalism appears to be more natural when dealing with structures excited by impulses
as it naturally takes transient aspects of simulated response into account, or in presence of nonlinear vibrations. In this
framework, the literature is plentiful of models initially developed in the framework of linear viscoelasticity [13]. The most
simple ones are well-known Maxwell, Kelvin–Voigt and Zener (also called standard linear solid) models, whereas more
sophisticated ones have been also developed, such as Golla–Huges–McTavish [14,15], anelastic displacement fields [16] or
generalized Zener model, which is probably the most widely used in linear viscoelasticity [17,18]. The common basis of all
those models is to describe damping behavior by combining rheological elements, such as springs, dash-pots and masses,
which are expressed in the time domain by combination of time derivatives. However, their ability to approach arbitrary
frequency-domain variations of a given behavior may be limited and they may require, for special shapes, a large number of
coefficients. Another class of model that has been widely studied for about 20 years lies on the concept of fractional time
derivatives [19]. Their main advantage lies in the ability to represent almost constant behavior in the frequency domain
using only a small set of coefficients, together with being well-posed, especially concerning causality and thermodynamics
aspects [20]. However, an important drawback of such types of models remains in the difficulty to transpose it into a
numerical time-integration scheme in an efficient way [21], and current implementations often requires a significant
number of internal variables.

Hence, providing time-domain models able to accurately describe various frequency shapes of damping properties while
being in accordance with essential properties of causality, stability and positivity of dissipation remains a sensitive issue that
has been recently addressed, for linear viscoelasticity, in an original way using existing mathematical works on complex
analysis [22]. Moreover, in the context of numerical simulation, time-discretization schemes applied to a given continuous
time-domain model have to be chosen accordingly since they often lead to distortion of its response in the frequency
domain, especially in the frequency range close to the Nyquist frequency f s=2 which is the maximum valid frequency
associated to a sampling rate f s according to Shannon theorem. Furthermore, it is desirable to make sure that the whole
numerical scheme resulting from space-time discretization of the initial problem fulfills some discrete-time energetic
identity, especially in order to guarantee the stability of the resolution [6].

The work presented here lies in the three axes mentioned above as our goal is to provide time-domain models able to
depict various types of frequency dependency for damping properties, so as to be usable in the context of time-domain
simulation of structures made from a wide range of materials (including wood, polymers and composites) under impulse
loading. In order to take the influence of the discretization step into account, the key point of the approach described in the
present paper is to directly work inside a discrete-time framework by considering the behavior law as a digital filter [23].
Given a sampling frequency corresponding to the time step of the simulation, the filter is then synthesized in the frequency
domain from experimental results on complex modulus through an optimization problem involving the discrete transfer
function of the filter. Essential properties as stability, causality and positivity of dissipation are ensured during the
optimization process through the addition of specific constraints acting on filter coefficients. Once synthesized, the resulting
filter, which corresponds to an already discretized behavior law, may be directly transposed in the discrete-time domain
keeping its well-posedness. Finally, one obtains a recursive relation between values at current and previous time steps,
which may be directly implemented in a discrete integration scheme, providing discrete-time energetic identity of the
whole scheme as well.

This paper is organized as follows. On the basis of a one-dimensional problem that will remain the application
framework throughout the paper, Section 2 introduces the formulation of discrete well-posed time-domain behavior law by
means of digital filtering. Section 3 shows the constrained optimization process used to synthesize filters from experimental
frequency-domain data. Section 4 describes the space-time numerical scheme to simulate structures equipped with
previous models, followed by stability analysis by means of an energetic approach and study of errors induced by numerical
dispersion and dissipation. Section 5 presents numerical assessments that (1) describes the whole process of modeling and
time-domain simulation of a structure given experimental frequency-domain results and (2) validate the whole approach,
especially regarding numerical errors.

2. Time domain modeling by means of digital filtering

2.1. Model problem

The present development, mainly those regarding the integration scheme, is realized in the context of one-dimensional
mechanical problems. To present the method in a simple context, we consider below the longitudinal vibrations of a
cantilever beam under the classical small perturbations hypothesis (Fig. 1).
Fig. 1. Cantilever beam schematics.



Fig. 2. Digital filter H representing the continuous constitutive law E.
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Denoting uðx; tÞ, εðx; tÞ and σðx; tÞ the displacement, strain and stress fields, respectively, and applying Newton second
law, leads to the following system of equations:

σ x; tð Þ ¼ E εðx; tÞð Þ ¼ E ∂uðx; tÞ
∂x

� �
; ð1aÞ

ρ xð Þ∂
2uðx; tÞ
∂t2

¼ ∂σðx; tÞ
∂x

þ f x; tð Þ; ð1bÞ

where the constitutive law E is assumed to be local, linear and time-invariant, ρðxÞ denotes the volumetric mass density and
f ðx; tÞ an external volumetric force density. We also consider the following boundary conditions: uðx;0Þ ¼ 0 and σðx; LÞ ¼ 0. In
the following (Section 5), let us note that f ðx; tÞ will be chosen as f ðx; tÞ ¼ FðtÞδðx�LÞ, with F(t) a given time function and δ
denoting the dirac distribution, in order to model an impact on the right end of the beam.

2.2. Discrete-time constitutive relation by digital filtering

Instead of discretizing a continuous time-domain model, we decide to represent it directly in the discrete-time space by a
digital filter H (Fig. 2). In order to achieve this, we first introduce a time discretization step Δt corresponding to a sampling
frequency f s ¼Δt�1 and we denote σnðxÞ ¼ σðx; tnÞ and εnðxÞ ¼ εðx; tnÞ the values of stress and strain field at time tn ¼ nΔt.

In accordance with the hypothesis of linearity and time-invariance on E, one can express the filter H in the time domain
as a linear recursive relation involving values of σ and ε at current and previous time steps [23]:

σnþ1ðxÞ ¼H σnðxÞ;…;σnþ1�Nd ðxÞ; εnþ1ðxÞ;…; εnþ1�Nc ðxÞ� � ¼H0 εnþ1ðxÞþ
XNc

l ¼ 1

clεnþ1� lðxÞ
 !

�
XNd

m ¼ 1

dmσnþ1�mðxÞ: ð2Þ

where H0, cl
� �

l and dm
� �

m denote time-invariant coefficients.
The Z-transform (denoted TZ) provides a convenient way to synthetize the filter H and study its properties in the

frequency domain. Given a sequence of discrete samples vnf gn at different time tn, the corresponding Z-transform �vðzÞ is
given by

TZ: vn
� �

n⟼ �vðzÞ ¼
X1

n ¼ �1
vnz�n: ð3Þ

Applying TZ to the discrete-time constitutive relation (2) gives the complex Z-transfer function H(z) as

H zð Þ ¼ �σ ðx; zÞ
�εðx; zÞ ¼H0

1þPNc
l ¼ 1 clz

� l

1þPNd
m ¼ 1 dmz

�m

" #
; ð4Þ

where �σ ðx; zÞ (resp. �εðx; zÞ) is the Z-transform of σnðxÞ� �
n (resp. εnðxÞ� �

n). The transfer function Hmay be equally written in a
form involving its poles ðpmÞ1rmrNd

and zeros ðqlÞ1r lrNc
as

H zð Þ ¼H0
∏Nc

l ¼ 1 1�qlz
� l

� �
∏Nd

m ¼ 1 1�pmz�m
� �

" #
: ð5Þ

Let us note that this last expression is particularly interesting as many properties of digital filters derive from conditions on
the poles and zeros of their transfer functions. Within the scope of the present study, the very first properties to fulfill are
the stability and causality of the digital filter H. Those properties are satisfied by the necessary and sufficient condition on
the poles ðpmÞ1rmrNd

of the transfer function which have to remain strictly inside the unit circle (see e.g. [24]):

pm
�� ��o1; 1rmrNd: ð6Þ

In the following, this last condition will be the first mandatory constraint imposed to any synthesis process of H.
For the rest of the paper, instead of working with the general expression (5), we restrict ourselves to the class of transfer

functions H resulting from the sum of Nf one-pole sub-filter Hk together with a constant function (pure gain) H0:

H zð Þ ¼H0þ
XNf

k ¼ 1

Hk zð Þ ¼H0þ
XNf

k ¼ 1

H0k

1�pkz�1: ð7Þ

The previous expression is actually the partial fraction expansion of every transfer function (5) satisfying Nc ¼Nd ¼Nf and
having poles of unit multiplicity, which restricts our scope to the discrete models which exclude elementary filters with
multiple or complex conjugate poles. This fundamental assumption has been done to simplify the energy-based stability
analysis performed in Section 4.2. Also, let us note that using a parallel association process with poles of unit multiplicity is a
common approach in continuous-domain identification (e.g. generalized Zener model) which seems to perform well for a
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wide class of viscoelastic materials. Besides, from a practical point of view, the optimization algorithm used in Section 3 in
order to synthetize filter H from continuous frequency-domain data allows the poles of the transfer function to be as close as
possible if needed.

2.3. Properties of one-pole filters Hk in the continuous frequency domain

Before going further into details about the synthesis of filter H based on experimental complex modulus, we will describe
here the main properties of the continuous frequency response Hc

kðωÞ (where ω denotes the angular frequency) of one-pole
elementary filters Hk(z) when poles pk satisfy condition (6). Such a response is usually obtained by evaluating Hk(z) on the
unit circle by means of the change of variable z’exp iωf�1

s

	 

:

Hc
kðωÞ ¼Hc

k;rðωÞþ iHc
k;iðωÞ ðωA ½0;πf�1

s �Þ; ð8Þ

with

Hc
k;r ωð Þ ¼H0;k

1�pk cos ðωf�1
s Þ

1þp2k�2pk cos ðωf�1
s Þ

; ð9aÞ

Hc
k;i ωð Þ ¼ �H0;k

pk sin ðωf�1
s Þ

1þp2k�2pk cos ðωf�1
s Þ

: ð9bÞ

The derivation of Hc
k;r with respect to ω gives

dHc
k;r

dω
ωð Þ ¼ �H0;kpk

ð1�p2k Þf
�1
s sin ðωf�1

s Þ
1þp2k�2pk cos ðωf�1

s Þ
	 
2;

such that when hypothesis (6) on pk is verified, H
c
k;r is a monotonously increasing function if H0;kpkr0, with the following

extrema:

Hc
k;rmin¼Hc

k;r 0ð Þ ¼ H0;k

1�pk
; ð10aÞ

Hc
k;rmax¼Hc

k;r πf s
� �¼ H0;k

1þpk
; ð10bÞ

ΔHc
k;r

�� ��¼ Hc
k;rmax�Hc

k;rmin
�� ��¼ 2jH0;kpkj

1�p2k
: ð10cÞ

The same applied to Hc
k;i gives

dHc
k;i

dω
ωð Þ ¼H0;kpkf

�1
s

ð2pk�ð1þp2k Þ cos ðωf�1
s ÞÞ

1þp2k�2pk cos ðωf�1
s Þ

	 
2
such that Hc

k;i vanishes at ω¼ 0 and ω¼ πf s and admits a unique extremum Hc
k;imax at ω

Hc
k;i

max given by

Hc
k;imax¼ �H0;kpk

1�p2k
; ω

Hc
k;i

max ¼ f sarccos
2pk

1þp2k

 !
: ð11Þ

Thus, Hc
k;iðωÞZ0 as soon as H0;kpkr0 and (6) is satisfied. Finally, Fig. 3 shows the response Hc

k;r and Hc
k;i of filter Hk for

different values of pk satisfying (6).

2.4. Well-posedness of the complete model in the continuous frequency domain

Let us now consider the continuous frequency response HcðωÞ of the filter H given by (7), which can be written as

HcðωÞ ¼Hc
rðωÞþ iHc

i ðωÞ ðωA ½0;πf�1
s �Þ; ð12Þ

with

Hc
r ωð Þ ¼H0þ

XNf

k ¼ 1

H0;k
1�pk cos ðωf�1

s Þ
1þp2k�2pk cos ðωf�1

s Þ
; ð13aÞ



Fig. 3. Hc
k;r and Hc

k;i for values of pk satisfying (6) and H0kpkr0 (f s ¼ 48 kHz): pk¼0.99 (—), pk¼0.88 (– –), pk¼0.13 (- -) and pk ¼ �0:58 (��). The vertical
dashed line corresponds to f s=2.

A. Parret-Fréaud et al. / Mechanical Systems and Signal Processing 68-69 (2016) 587–607 591
Hc
i ωð Þ ¼ �

XNf

k ¼ 1

H0;k
pk sin ðωf�1

s Þ
1þp2k�2pk cos ðωf�1

s Þ
: ð13bÞ

Taking the continuous frequency-domain transposition of Eq. (4), one has

Hc ωð Þ ¼ σ̂ ðx;ωÞ
ε̂ðx;ωÞ; ð14Þ

where v̂ðx;ωÞ stands for the partial time Fourier transform of vðx; tÞ given for causal signals by

v̂ðx;ωÞ ¼
Z 1

0
vðx; tÞexp � iωtð Þ dt: ð15Þ

From a mechanical point of view, Eq. (14) defines the usual complex modulus of a given material as the ratio of the
Fourier transform of stress and strain. Thus, we may interpret HcðωÞ as the complex modulus in the continuous frequency-
domain associated with a discrete-time behavior law defined by filter H. In order to obtain a well-posed model, the first
additional condition to impose is the positivity of the static modulus as

Hcð0Þ ¼Hð1ÞZ0: ð16Þ
Furthermore, the global loss factor ηH and elementary ones ηHk associated to elementary one-pole filters may be

introduced in a similar way as for the complex modulus:

Hc ωð Þ ¼Hc
r ωð Þ 1þ iηHðωÞ� �¼Hc

r ωð Þ 1þ i
XNf

k ¼ 1

ηHk ðωÞ
 !

; with ηHk ωð Þ ¼Hc
k;iðωÞ

Hc
rðωÞ : ð17Þ

In order to obtain a dissipative model in accordance with the second law of thermodynamics, we choose to impose the
positivity of each loss factor ηHk , so as to ensure each internal process act as a dissipative one. From Eqs. (9b) and (13a), this
may be enforced by the following condition acting on the coefficients of Hk:

H0;kpkr0; 8k; ð18Þ
which ensure functions Hc

i;k to be positive and Hc
r;k to be monotonously increasing, as already seen in Section 2.3. This last

property, together with condition (16) on poles pk, ensure positivity of Hc
r, and thus of each function ηHk on the whole

frequency range. Let us note that condition (18) is only a sufficient one to obtain a positive global loss factor ηH and the
dissipation property of the underlying behavior. Indeed, we may exhibit filters constituted of some components with
negative dissipation, which may be balanced by the overall dissipation induced by the remaining ones so that the global loss
factor ηH remains positive on the whole frequency range. As one must be careful when dismissing a model which is itself
physical only because some of its elementary components appear to be not physical, it would be probably interesting to try
to relax this constraint in future works even if it might complicate the whole synthesis process.

3. Synthesis of filter H from frequency-domain damping data

Given a set En

j

n o
j
of values of Young's modulus at various frequencies ωj

� �
j, which may be results of experimental

procedures, this section is devoted to the description of the optimization process that allows us to synthesize the filter H(z)
previously introduced. The underlying problem consists in finding parameters H0; H0;k; pk

� �
k minimizing the distance
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between the continuous response HcðωÞ of filterH and the value En

j at each frequency ωj, while ensuring conditions (6), (16)
and (18) in order to guarantee the well-posedness of the corresponding discrete-time model. From a general point of view,
finding an efficient method to correctly identify a material law from data given in the complex plane is still a tricky task,
though it has been recently addressed in some original way when identifying rheological behaviors, using mathematical
results from complex analysis [22] or graphical methods stemming from the field of system automation [25].

3.1. Cost function and constrained optimization problem

In the following, we choose to work with a non-linear least-square problem by directly measuring the distance between
Hc and the input data using the classical quadratic norm on both real and imaginary part. Denoting X ¼ H0; H0;k; pk

� �
k

� �T the
vector containing filter parameters, the resulting cost function L to be minimized is

L Xð Þ ¼ αrLr Xð ÞþαiLi Xð Þ; ¼ αr

X
j

Hc
rðωjÞ�Re En

j

	 

Re En

j

	 

0
@

1
A

22
64

3
75
1=2

þαi

X
j

Hc
i ðωjÞ�Im En

j

	 

Im En

j

	 

0
@

1
A

22
64

3
75
1=2

; ð19Þ

where αr and αi are scaling coefficients, which will be set to 1 in the following.
In order to study the sensitivity of the cost function L to the parameters of the optimization process, we first express, for

an arbitrary parameter Z, the partial derivative of L with respect to Z as a function involving the sensitivity of Hc:

∂ZL¼ αrL�1
r

X
j

Hc
rðωjÞ�Re En

j

	 

Re En

j

	 
2 ∂ZHc
r ωj
� �0

B@
1
CA þαiL�1

i

X
j

Hc
i ðωjÞ�Im En

j

	 

Im En

j

	 
2 ∂ZHc
i ωj
� �0

B@
1
CA

Then, the derivative of Hc
r and Hc

i with respect to H0, H0;k and pk may be written from (7), (9a) and (9b) as

∂H0H
c
r ωð Þ ¼ 1;

∂H0H
c
i ωð Þ ¼ 0;

∂H0;k
Hc

r ωð Þ ¼ 1�pk cos ðωf�1
s Þ

1þp2k�2pk cos ðωf�1
s Þ

;

∂H0;k
Hc

i ωð Þ ¼ � pk sin ðωf�1
s Þ

1þp2k�2pk cos ðωf�1
s Þ

;

∂pkH
c
r ωð Þ ¼H0;k

ð1þp2k Þ cos ðωf�1
s Þ�2pk

1þp2k�2pk cos ðωf�1
s Þ

	 
2;

∂pkH
c
i ωð Þ ¼ �H0;k

ð1�p2k Þ sin ðωf�1
s Þ

1þp2k�2pk cos ðωf�1
s Þ

	 
2:
Previous equations show that the sensitivity of L to coefficients pk, which follows directly from those of ∂pkH

c
r and ∂pkH

c
i , is

scaled by H0;k, which is not the case concerning the sensitivity with respect to H0 and H0;k. Unfortunately, this may lead to a
huge lack of sensitivity to the last parameters, and thus poor performance of the minimization algorithm as H0;k may be
several order of magnitude above those of pk (typically 109 versus 0.1). To overcome this issue, we apply some partial scaling
to the filter parameters by scaling coefficients H0 and H0;k with a reference value ~H (typically ~H ¼maxj En

j

��� ���	 

Þ prior to the

optimization process.
Finally, the constrained optimization problem to be solved writes in a generic way as

find ~X ¼ ~H0; ~H0;k; pk
n o

k

h iT
verifying min

~X
Lð ~X Þ

subject to constraints Cið ~X Þ40; ð20Þ
where ~H0 ¼H0= ~H , ~H0;k ¼H0;k= ~H , and function Ci contains the constraints (6), (16) and (18) on the filter coefficients:

Cið ~X Þ ¼

1�jp1j
⋮

1�jpNf
j

~H
cð0Þ

� ~H0;1p1
⋮

� ~H0;Nf
pNf

2
6666666666664

3
7777777777775
: ð21Þ
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From the previous choices, we get a general non-linear optimization problem on both the cost function and the inequality
constraints, which is unfortunately non-convex and exhibits several local minima. In order to solve it, we use a general-
purpose algorithm devoted to non-linear optimization problems, namely the classical sequential quadratic programming
algorithm [26] and its implementation in the GNU/Octave programming language (provided by sqp function). In practice,
this algorithm, which is in some ways close to Newton's method, solves in an iterative way a set of sub-problems defined by
both quadratic approximation of the cost function and linear approximation of the constraints.

So far, let us note that the setup of a more optimal cost function, which may e.g. make the overall optimization problem
more robust or take into account some external factors like noisy data, is still an open problem and will be studied in
future works.
3.2. Application to a visco-elastic material

We now apply the previous described approach to complex modulus data related to polyurethane 24-8-1 foam at 20 1C,
taken from AFWAL-TR-84-3089 technical report [11], the sampling frequency f s being set to 80 kHz. In order to illustrate the
synthesis process, we repeat it in an iterative way to build a set of filters defined by Eq. (7) with an increasing number Nf of
one-pole sub-filters, until we obtain a satisfactory frequency representation of the input data. First, we introduce the
frequency range of interest ½fmin; fmax� on which we want to synthesize the filter and we divide it into Nf logarithmically

spaced intervals ½f k; f kþ1� ð0rkrNf �1Þ, with f 0 ¼ fmin, f Nf
¼ fmax, f k ¼ fminðΔf Þk ð1rkrNf �1Þ and Δf ¼ ðfmax=fminÞ1=Nf .

Then, prior to the optimization process, we initialize the pole pk of every sub-filter Hk in order to have the imaginary part of
its response reaching its maximum Hc

k;imax, as given by Eq. (11), on the logarithmic center frequency f kþ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f kf kþ1

p
of

each interval ½f k; f kþ1�.
In the following, the values of ½fmin; fmax� have been set to [10 Hz, 25 kHz], which covers the frequency range of the

experimental data available from the report. As we are mostly interested in the frequencies in the audible range, which is
approximately [20 Hz, 20 kHz], the critical material behavior below 10 Hz will not have a strong impact on our predictions.
For a given iteration p corresponding to the synthesis of a filter with Nf ¼ p one-pole sub-filters, we denote LðXpÞ the
associated error coming from the optimization process, that is the cost function (19) applied on the set Xp containing the
parameters of the resulting filter. Recall that LðXpÞ measures the gap between the response of the synthesized filter and the
input data. In order to assess the convergence of the whole iterative procedure previously described, we also introduce the
relative error eL;p measuring the variation of LðXpÞ between two successive iterations, as

eL;p ¼
jLðXp�1Þ�LðXpÞj

jLðXp�1Þj
2rprNf
� �

: ð22Þ

Fig. 4 shows the complex modulus data and the continuous frequency-domain response of synthesized filters starting
from Nf¼1 sub-filters until the iterative procedure has converged.
While the representation of discrete data by a filter with only 1 or 2 one-pole sub-filters (see Fig. 4(a) and (b)) gives a far too
coarse description, especially concerning the imaginary part of the complex modulus which is so crucial for an accurate
description of damping, we notice that the model begins to be accurate from 3 sub-filters (Fig. 4(c)). As shown by Fig. 4(e), a
digital filter with 5 sub-filters (whose coefficients are detailed in Table 1) seems to be the best approximation achievable
regarding the relative dispersion of input data. Indeed, requesting another sub-filter in the model leads to exactly the same
behavior as the one given by 5 sub-filters, as shown by Fig. 4(f).

On this particular example, let us note a crucial behavior regarding the frequency response of discrete-time models,
whose imaginary part Hi

c
vanishes at Nyquist frequency. Consequently, the closer the upper limit of the frequency range of

interest fmax to Nyquist frequency f s=2 is, the sharper Hi
c
should be between fmax and f s=2 in order to accurately describe

behavior until fmax. Thus, it requires to use one or more sub-filters with maxima close to fmax in order to get a sharp
behavior, as can be seen from Fig. 4(c) to (e). Another solution would be to increase sampling frequency in order to move
Nyquist frequency further away from the upper limit of the frequency range of interest, thus allowing to represent the
transition between fmax and f s=2 with smoother sub-filters. Unfortunately, it may also result in a significant increase of the
computational load of the numerical simulation that follow, as it corresponds to a reduction of the time step. Consequently,
as a general rule, we should keep f s as small as possible to save computational costs while ensuring the best representation
of the initial data by the synthesized filter.

Before concluding this section on filter synthesis, we must emphasize that the quality of the synthesized filter is highly
dependent on the accuracy of the experimental values used as input, since we are generally dealing with noisy data to
identify the filter parameters. Several research groups have proposed identification techniques that take into account input/
output error noise, among which we can cite Mossberg et al. [27] and Pintelon et al. [28], who give complex modulus
estimates together with their associated standard deviation or uncertainty bound. Another approach is followed by Collet
et al. [22], who propose a noise-correction method of complex Young modulus measurements based on the three
constraints of causality, positivity of the dissipation rate and reality of the relaxation function. In the future, such methods
could be used to build new filter synthesis algorithms, where a confidence interval will be considered and not only exact
frequency-domain data points.



Table 1
Coefficients of synthesized filter H related to polyurethane 24-8-1 for Nf¼5.

H0 ;H0;k pk

9.8987 �108
�9.8006 � 104 9.9889 �10�1

�1.8068 � 106 9.9181 �10�1

�1.9877 �107 9.4665 � 10�1

�1.7198 �108 6.8759 �10�1

1.1471 � 109 �2.1564 � 10�1

Fig. 4. Input data (solid circles) and continuous frequency-domain response (solid curves) of synthesized filter obtained with increasing number Nf of one-
pole sub-filters. Thick curves show the response Hc of the whole filter whereas thin curve show the contribution Hk

c
of each elementary filter to the

imaginary part of the response. Nyquist frequency f s=2 is represented by black dashed lines. (a) Nf¼1, LðX1Þ ¼ 5:62. (b) Nf¼2, LðX2Þ ¼ 2:81, eL;2 ¼ 50:1%. (c)
Nf¼3, LðX3Þ ¼ 1:75, eL;3 ¼ 37:7%. (d) Nf¼4, LðX4Þ ¼ 1:48, eL;4 ¼ 15:2%. (e) Nf¼5, LðX5Þ ¼ 1:36, eL;5 ¼ 8:1%. (f) Nf¼6, LðX6Þ ¼ 1:36, eL;6 ¼ 0%.
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Fig. 5. Spatial discretization.
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4. Time domain simulation with discrete-time constitutive relation

The objective of the present section is to integrate previously obtained discrete-time material law into an efficient finite-
difference numerical scheme, in order to solve problems defined by Eqs. (1).

4.1. Explicit finite difference scheme

We start by keeping the same time discretization (time step Δt, sampling frequency f s ¼Δt�1) as the one introduced in
Section 2.2. In order to represent the constitutive Eq. (1a), we use the discrete-time framework introduced in the previous
section and transpose the transfer function (7) in the time domain, where z�1 stands for the unit delay operator
(z�1TZðvnÞ ¼ TZðvn�1Þ). We obtain a discrete time-domain constitutive law involving Nf internal variables σn

k ðxÞ at tn.
Furthermore, we choose to approximate Eq. (1b) by a leap-frog scheme, which is explicit and second order in time. Thus, the
semi-discretized problem in time writes

σnþ1
k xð Þ ¼H0k

dunþ1

dx
xð Þþpkσ

n
k xð Þ; k¼ f1;…;Nf g;

σnþ1 xð Þ ¼H0
dunþ1

dx
xð Þþ

XNf

k ¼ 1

σnþ1
k xð Þ; ð23aÞ

ρ xð Þu
nþ1ðxÞ�2unðxÞþun�1ðxÞ

Δt2
¼ dσnðxÞ

dx
þ f n xð Þ: ð23bÞ

Regarding the spatial discretization (Fig. 5), we divide the interval ½0; L�with Nhþ1 points of equal step h¼ L=Nh to obtain
a first grid Ωh;0 of points xj ¼ jh. At time tn, we introduce the values uj

n
and fj

n
of u and f on points xj, and the corresponding

vectors un
h and fnh. We also introduce a staggered grid Ωh;1=2 of points xjþð1=2Þ on which we define the values σn

jþð1=2Þ and

εnjþð1=2Þ, and the corresponding vectors σn
h and εnh. For any discrete field vnh (resp. wn

h) defined on Ωh;0 (resp. Ωh;1=2), we

introduce the operator Dh (resp. Dn

h) of second-order centered spatial derivative defined on Ωh;1=2 ðresp: Ωh;0Þ:

Dhvnh ¼
vnjþ1�vnj

h

" #
j

AΩh;1=2; Dn

hw
n
h ¼

wn
jþð1=2Þ �wn

j�ð1=2Þ
h

" #
j

AΩh;0: ð24Þ

Finally, the full-discretized explicit problem writes

σnþ1
hk ¼H0kDhunþ1

h þpkσn
hk; k¼ f1;…;Nf g;

σnþ1
h ¼H0Dhunþ1

h þ
XNf

k ¼ 1

σnþ1
hk ; ð25aÞ

ρ
unþ1
h �2un

hþun�1
h

Δt2
¼Dn

hσ
n
hþfnh: ð25bÞ

4.2. Discrete energy and stability analysis

An interesting way to study the behavior of a numerical time-integration scheme is to investigate its ability to preserve a
discrete energy across the time steps of the simulation [6]. Let us note that such a study has been performed in [18] for a
discretized system with a generalized Zener model. The same approach has been applied to the present scheme where the
material law is represented by a digital filter. For the sake of clarity, only the results of the energetic analysis and the
subsequent stability analysis will be exposed in the current section and we refer to the Appendix A for the corresponding
developments. In particular, notations �k k0, �k k1=2 and �; �ð Þ0, �; �ð Þ1=2 refer to particular norms and scalar products detailed in
Eqs. (A.2a) and (A.2b).

Studying scheme (25) enables us to express the following energy identity:

Enþð1=2Þ
h �En�ð1=2Þ

h

Δt
¼ Pn

h�Dn
h; ð26Þ
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which relates the variation of the numerical energy Enþð1=2Þ
h between time steps tn�ð1=2Þ and tnþð1=2Þ to the work of the

external forces Ph
n
and the dissipation Dh

n
arising from one-pole filters at time step tn. This identity makes use of internal

variables snhk, which are related to the dissipative part of each one-pole filter:

snhk ¼ σn
hk�

H0k

1�pk
Dhun

h; k¼ f1;…;Nf g: ð27Þ

In the previous energy identity (26), Enþð1=2Þ
h may be split in three distinct terms Enþð1=2Þ

hk , Enþð1=2Þ
hf and Enþð1=2Þ

hs :

Enþð1=2Þ
h ¼ Enþð1=2Þ

hk þEnþð1=2Þ
hf þEnþð1=2Þ

hs ; ð28aÞ

with

Enþð1=2Þ
hk ¼ ρ

2
unþ1
h �un

h

Δt

�����
�����
2

0

; ð28bÞ

Enþð1=2Þ
hf ¼ 1

2
H0þ

XNf

k ¼ 1

H0k

1�pk

 !
Dhunþ1

h ;Dhun
h

� �
1=2 �

XNf

k ¼ 1

1�p2k
8H0kpk

snþ1
hk

�� ��2
1=2þ snhk

�� ��2
1=2

	 

; ð28cÞ

Enþð1=2Þ
hs ¼ �Δt2

4

XNf

k ¼ 1

snþ1
hk �snhk
Δt

;Dh
unþ1
h �un

h

Δt

 ! !
1=2

: ð28dÞ

The first term Enþð1=2Þ
hk corresponds to the discrete kinetic energy of the system, while the second term Enþð1=2Þ

hf is related to

the discrete internal energy stored in the digital filter. Finally, the last term Enþð1=2Þ
hs comes from the finite difference

approximation. In the right-hand side of Eq. (26), the dissipation Dh
n
, which involves mean values of shk between time steps,

is simply the sum of the dissipation terms associated to each one-pole filter:

Dn
h ¼ �

XNf

k ¼ 1

ð1�pkÞ2
2ΔtH0kp

snþ1
hk þsnhk

2

�����
�����
2

1=2

þ snhkþsn�1
hk

2

�����
�����
2

1=2

2
4

3
5: ð28eÞ

Finally, the work of the external forces is expressed as

Pn
h ¼ fnh;

unþ1
h �un�1

h

2Δt

 !
0

: ð28fÞ

On the basis of the previous energetic identity, we study the conditions which ensure that the discrete energy Enþð1=2Þ
h

and the dissipation term Dh
n
remains positive for each time step. Assuming the necessary condition (6) on the poles pk enab-

ling causality and stability of the filter is fulfilled, this leads to additional sufficient conditions involving filter coefficients
and filter response H(z) at a specific point:

Hð1ÞZ0; ð29aÞ

H0kpkr0; k¼ f1;…;Nf g; ð29bÞ
as well as discretization parameters:

Δtrh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

Hð�1Þ

r
: ð29cÞ

It is worth noting that the filter representing a material law has to be synthesized prior to the simulation process at a
selected sampling frequency fs, which therefore fixes the time step Δt used for the simulation: Δt ¼ f�1

s . Consequently, it is
more interesting to express previous stability condition in terms of the sampling frequency and continuous frequency
response of the filter:

Hcð0ÞZ0; ð30aÞ

H0kpkr0; k¼ f1;…;Nf g; ð30bÞ

hZhmin ¼
1
f s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hcðπf sÞ

ρ

s
: ð30cÞ

So far, it is interesting to note that the two first conditions (30a) and (30b) are exactly the same as (16) and (18) introduced
in Section 2.4, which both ensure the positivity of the static modulus and the dissipative behavior of each one-pole sub-filter
involved in the discrete behavior law. At last, the third condition (30c) is a classic CFL stability condition on the space
discretization parameter h that involves the response of filter Hc at the Nyquist frequency ω¼ πf s or f ¼ f s=2, which is the
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maximum valid frequency associated to the sampling rate f s. Indeed, the ratio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hcðπf sÞ=ρ

p
may be interpreted as the

maximum speed of longitudinal waves traveling into the medium.
4.3. Dispersion and dissipation analysis

Dispersion and dissipation properties are essential features of numerical schemes in the simulation of wave propagation
phenomena. Unfortunately, although the literature contains a large numbers of works for conservative systems, there seems
to be only few works devoted to the study of dissipative systems, among which the work by Robertsson et al. [29].

A first step to investigate the dispersion and dissipation properties of our numerical scheme is to determine the
associated dispersion relation. To do so, we follow a classical procedure and consider a single wave solution of the form:

un
h ¼ wnexpðijknhhÞ

� �
j ðwith i¼

ffiffiffiffiffiffiffiffi
�1

p
Þ; ð31Þ

where knh is the complex wavenumber of the discrete problem accounting for both dispersion and dissipation phenomena.
We also extend the definition (3) of the Z-transform to the fields defined on Ωh;0 and Ωh;1=2 as

TZ: vnh
� �

n ¼ vnj
h i

j

� �
n
⟼ �vhðzÞ ¼

X1
n ¼ �1

vnhz
�n

" #
j

; ð32Þ

such that the fundamental property TZðvnþ1
h Þ ¼ zTZðvnhÞ holds.

Then, applying the Z-transform to Eq. (25), where the external forces are taken equal to zero, gives

�σhkðzÞð1�pkz
�1Þ ¼H0kTZðDhun

hÞ; k¼ f1;…;Nf g;

�σhðzÞ ¼H0TZðDhun
hÞþ

XNf

k ¼ 1

�σhkðzÞ; ð33aÞ

ρ
z�2þz�1

Δt2
�uh zð Þ ¼ TZ Dn

hσ
n
h

� �
: ð33bÞ

From the linearity of TZ, one has TZðDhvnhÞ ¼Dh �vhðzÞ and the same applies to Dn

h, such that Eq. (33) may be rewritten
involving discrete transfer function H(z) by substituting (33a) and (33b):

ρ �δt�ðzÞ �uhðzÞ ¼HðzÞDn

hDh �uhðzÞ; ð34Þ

where �δt�ðzÞ denotes the Z transform of the leap-frog (25b):

�δt� zð Þ ¼ z�2þz�1

Δt2
: ð35Þ

Next, using the discrete-time-space ansatz (31) leads to

Dn

hDh �uh zð Þ ¼ expðiknhhÞ�2þexpð� iknhhÞ
h2

�uh zð Þ ¼ � 4

h2
sin 2 knhh

2

� �
�uh zð Þ;

so that Eq. (34) becomes

ρ �δt� zð Þ ¼ � 4

h2
H zð Þ sin 2 knhh

2

� �
: ð36Þ

Finally, the dispersion relation may be obtained by evaluating relation (36) on the unit circle, that is substituting z by
expðiωf�1

s Þ and observing that

�δt�ðexpðiωf�1
s ÞÞ ¼ � 4

Δt2
sin 2 ωΔt

2

� �
:

As a result, we obtain the following dispersion relation:

knh ωð Þ ¼ khr ωð Þþ ikhi ωð Þ ¼ 7
2
h
arcsin

h
Δt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

HcðωÞ

r
sin

ωΔt
2

� �� �
: ð37Þ

From the real part khr and imaginary part khi of the discrete wave number, we also define the speed ch and damping
coefficient αh associated with the discrete problem (25). To do so, we consider a continuous fictive solution u which may be
written as

uðx; tÞ ¼ u0expðiknhðωÞx�ωtÞ ¼ u0expð�khiðωÞxÞexpðikhrðωÞx�ωtÞ ¼ u0expð�αhðωÞtÞexpðikhrðωÞðx�chðωÞtÞ;
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with ch and αh defined as

ch ωð Þ ¼ ω
khrðωÞ; αh ωð Þ ¼ ch ωð Þkhi ωð Þ ¼ω

khiðωÞ
khrðωÞ: ð38Þ

5. Numerical simulations

Let us now illustrate on a simple example the whole approach, including both filter synthesis and simulation steps. To do
so, we consider the model problem of Section 2.1 with a beam of length L ¼ 1 m and density ρ¼1149 kg/m3, constituted of
the same material as the nylon bar specimen studied by Collet et al. [22] and excited by an impact on its right end. In order
to build the discrete-time behavior, we consider the experimental data on complex modulus obtained in [22] and
represented (with black dots) in Fig. 6.

In the following, we wish to simulate the response of the beam on the frequency range [20 Hz, 20 kHz] corresponding to
audible signals, while ensuring given error criteria on dispersion and dissipation. Concerning sound perception, the most
restrictive criterion has to be set on the dispersion error which will be limited to 1% as it corresponds to the order of
magnitude of pitch sensitivity perceived by the human ear. The criterion on the dissipation error, which is related to the
temporal decay of each harmonics, is less critical and will be set accordingly to 5%.

Next, in the present discrete-time behavior framework, the whole simulation process involves: (1) finding the best
sampling frequency f s, (2) identifying material law and (3) performing numerical simulation. However, choosing the best
sampling frequency f s from an error criterion on dispersion and dissipation of the numerical scheme is not an easy task
since the validation of such criterion depends on the continuous response of the synthesized filter, as shown in Section 4.3,
which itself requires f s to be fixed prior to the optimization process, as shown in Section 3. Consequently, in order to
minimize overall computational load, we suggest to set f s to its lowest possible value through an iterative procedure that
involves many filter synthesis followed by validation of dispersion and dissipation error criteria.

5.1. Filter synthesis

In the subsequent developments, for the sake of simplicity, we choose to fix the sampling frequency f s a priori to 180 kHz,
which is 9 times higher than the maximum frequency of the considered frequency range. Then, filter H is synthesized
through constrained optimization problem (20), using GNU Octave sqp function in a same way as what has been done in
Section 3.2. At the end of the process, one obtains a filter made of Nf¼4 one-pole sub-filter whose coefficients are detailed in
Table 2 and whose frequency-domain response is plotted in Fig. 6. It must be emphasized that the synthesized filter can only
represent the correct material behavior in the frequency range covered by the experimental values, i.e. 500 Hz to 8 kHz
approximately. Outside this frequency range, the filter yields a physically possible behavior in terms of causality and
verification of thermodynamics laws, but not necessarily the “correct” behavior for such materials. In the following, we set
the frequency range of interest ½fmin; fmax� (introduced in Section 3.2) of the synthesis algorithm to [100 Hz, 20 kHz]. This
frequency range thus goes beyond the frequency range covered by the experimental values of Collet et al. [22].

5.2. Choice of excitation function

In order to highlight the influence of dispersion and dissipation due to the numerical scheme during the time-domain
simulation, it is desirable to use a broadband excitation with small low frequency components. Thus, we choose to model
Fig. 6. Real (top) and imaginary (bottom) parts of experimental data (solid circles) related to the nylon bar specimen of [22] and response Hc of the
synthesized digital filter (solid curves) with pure gain and Nf¼4 one-pole sub-filters.
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the impact time function by a Ricker wavelet given by

FðtÞ ¼ F0 1�2π2f 20ðt�t0Þ2
	 


exp �π2f 20ðt�t0Þ2
	 


; ð39Þ

where f0 is the maximum of the frequency spectrum, fixed to 10 kHz, and F0 ¼ 1:0� 1011 N=m2. Fig. 7 shows the time-
domain shape and the power spectral density of such an excitation.

Let us note that all power spectral densities presented here are given in terms of normalized power level in dB, which
writes for a given signal v̂ðf Þ as

LNV ¼ 20 log10
v̂ðf Þ

max
f

v̂ðf Þ

0
@

1
A: ð40Þ

5.3. Time-domain simulation

Once the filter has been synthesized, numerical simulation of the resulting discrete problem (25) is performed keeping
the same time discretization corresponding to the sampling frequency f s. Then, the CFL condition (30c) associated with the
explicit scheme (25) gives the minimum value hmin of the spatial discretization parameter h in order to guarantee the
stability of the numerical scheme. Next, mesh size is chosen as the minimum value hZhmin which remains compatible with
the uniform spatial discretization of the beam, which yields (denoting E(Y) the integer part of Y):

h¼ L
Nh

with Nh ¼ E
L

hmin

� �
þ1: ð41Þ

Furthermore, it is interesting to note from (30c) the proportionality relation between hmin and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hcðπf sÞ

p
, which suggests to

keep this last value as small as possible during the optimization process in order to lower the spatial discretization step. This
may be particularly relevant when working in a frequency range ½fmin; fmax� that is far from f s=2, where the optimization
process may leads to a significant increase of Hc between fmax and f s=2 without noticeable improvement of the material
response on the frequency range of interest. This last remark may be taken into account by directly incorporating an
additional constraint Hcðπf sÞrHc

max in the optimization process (20).
In order to study the influence of h on the properties of the numerical scheme, let us introduce the following CFL number

as CFL¼ h=hmin, such that CFL¼ 1 in the ideal case corresponding to h¼ hmin. As for the present problem, the minimum
possible spatial size is h¼9.52 mmwhich corresponds to a CFL number of 1.004. The time evolution of beam displacement u
at observation point xobs ¼ 0:47L is plotted in Fig. 8. Fig. 9 plots both the associated power spectral density LNU and phase φU
for the two CFL numbers and compares it to a reference modal solution detailed in Appendix B. These two figures show that
the numerical solution agrees very well with the modal one over the whole frequency band for the best CFL value of 1.004,
whereas one may clearly notice some discrepancies increasing with frequency for a CFL value of 1.110.
Fig. 7. Time-domain evolution (left) and normalized power spectral density (right) of Ricker wavelet excitation F(t) with f 0 ¼ 10 kHz.

Table 2
Coefficients of synthesized filter H related to nylon for Nf¼4.

H0 ;H0;k pk

3.4299 � 109
�2.8670 �105 9.8987 �10�1

�2.7138 �105 9.9991 � 10�1

�1.0050 �107 9.2889 �10�1

�1.0941 � 108 4.6631 � 10�1



Fig. 8. Time-domain response uðxobs; tÞ corresponding to CFL¼ 1:004 (black thick dashed) and CFL¼ 1:110 (magenta thin dashed) up to 40 ms (left) and up
to 4 ms (right). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 9. Power spectral density LU
N
in log level (left) and phase response φU (right) corresponding to CFL¼1.004 (black thick dashed), CFL¼1.110 (magenta

thin dashed) and reference solution (cyan thick solid). (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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Now, in order to illustrate the performance of the scheme relative to dispersion and dissipation, we introduce the relative
errors ekr and eki on numerical dispersion and dissipation by

ekr ωð Þ ¼ jkrðωÞ�khrðωÞj
jkrðωÞj ; eki ωð Þ ¼ jkiðωÞ�khiðωÞj

jkiðωÞj ; ð42Þ

where khr and khi are defined from dispersion analysis of Section 4.3 and kr and ki are related to the complex number of the
reference problem. Fig. 10 shows relatives errors ekr and eki on the real and imaginary part of the wavenumber for the ideal case
corresponding to CFL¼1 (solid curve) and for the lower admissible spatial discretization corresponding to CFL¼1.004 (dashed
curve). We notice that the error ekr, which may be linked to the speed of waves propagating into the medium, remains lower than
1% over the whole frequency range of interest. However, comparing it with the ideal curve shows an important variation of ekr
close to f s=2 despite a very low increase of the CFL coefficient. As for the imaginary part of the wavenumber, it is noticeable that
the relative error is an order of magnitude greater. However, we notice that the increase of CFL number has less influence here,
the two corresponding curves being very close. Hence, the dissipation error seems to come essentially from the numerical
scheme itself and little from the choice of discretization parameters, which suggest to use fourth order schemes in the time
discretization of Eq. (1b) and in the definition of spatial operators (24) in order to reduce it. Here, optimal choice of h
corresponding to CFL¼1.004 leads to a relative error of 0.06% for ekr and 4.46% for eki at 20 kHz, which validates a posteriori the
initial choice of f s regarding error criterions introduced in the beginning of the section.

Starting from the dispersion relation, one can express the wavelength λ as a function of the frequency f for the
continuous reference problem by

λ fð Þ ¼ c fð Þf �1 ¼Re Hcðf Þ� �
f
ffiffiffi
ρ

p : ð43Þ



Fig. 10. Dispersion and dissipation properties corresponding to CFL¼1 (cyan thick solid), CFL¼1.004 (black thick dashed) and CFL¼1.110 (magenta thin
dashed) on the frequency range ½fmin; f s=2�, where the maximum frequency of interest fmax ¼ 20 kHz is shown by dashed black line. (a) Dispersion error
ekr ðωÞ. (b) Dissipation error eki ðωÞ. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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The space discretization parameter h may then be compared to the smallest wavelength λmin in the frequency range of in-
terest, that is λmin ¼ 84:53 mm corresponding to f ¼ 20 kHz. Such a discretization corresponds to a minimal spatial
resolution of 8 points per wavelength.

At last, in order to study how the spatial discretization factor h may influences the quality of the final solution, especially
regarding dispersion and dissipation errors, an additional simulation has been performed for h¼ 10:53 mm, corresponding
to a CFL coefficient of 1.110. As it can be seen in Fig. 10, the dispersion error is very sensitive to the increase of CFL number,
which is in agreement with previous comments. Indeed, relative error ekr reaches 0.55% at CFL¼1.110 and its influence is
noticeable in Fig. 9 from about 12 kHz. As for the dissipation, the increase of the relative error is also significant with eki
reaching 6.06%, which leads to an underestimation of damping on the higher frequency range. This last point is also
noticeable with overruns located on the peaks of the time-domain responses plotted in Fig. 8.
6. Conclusion

The work that has been presented in this paper introduces an original approach to provide well-posed and accurate
description of damping phenomena for various materials in the context of time-domain numerical simulations. Its original
feature is to build a discrete-time model which may be interpreted as a digital filter, thus allowing to use the common tools
available in the field of digital filtering. The whole process including material identification and numerical simulation may
be summarized by the following steps:
1.
 choose an initial sampling frequency f s;

2.
 synthesize filter H, representing discrete-time material law, from experimental data;

3.
 calculate minimum grid step hmin from Hcðπf sÞ using CFL relation (30c);

4.
 choose minimal grid step hZhmin compatible with geometric parameters;

5.
 compute dispersion and dissipation errors ekr and eki over the frequency range and validate error criterion;

6.
 if previous validation fails, choose a refined sampling frequency f 0sZ f s and restart steps 2–5 up to the satisfaction of error

criterion.

The filter is synthesized through an optimization process in order to have its transfer function in the frequency domain
approximate a given set of complex elastic moduli at various frequencies. Moreover, adding some constraints on the filter
coefficients during the optimization process allows one to obtain a resulting discrete-time model satisfying stability,
causality and positivity of dissipation. Finally, its transposition into the time domain is straightforward and leads to a
recursive discrete-time relation which is directly implementable into a numerical integration scheme and may be
interpreted as a discrete-time constitutive law with internal variables. Furthermore, the choice of the sub-filters constituting
the filter previously synthesized, enable the whole numerical scheme resulting from the discrete-time constitutive law and
the discretization of linear momentum equation to fulfill some discrete-time energetic identity. As a result, the whole
modeling procedure may be interpreted as a two-way process which (1) carries identification of a continuous time-domain
law from experimental results and (2) sets up the best time-discretization scheme in order to master the high-frequency
discrepancies between continuous-time and discrete-time frequency response of the resulting model. Besides, one may
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evaluate errors on dispersion and dissipation of the numerical scheme and control it through an optimal choice of both
discretization and filter parameters having an impact on the high-frequency response of the discrete model.

Up to now, this approach has been developed on a one-dimensional problemwith finite difference integration scheme in
space and time. Future developments will deal with its integration into dynamic three dimensional problems with finite
element discretization in space and finite difference time integration, and with extension to inhomogeneous and anisotropic
materials. Also, the extension and theoretical analysis of the general form of the material filter with multiple and complex-
conjugate poles will be done in future works.
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Appendix A. Energetic analysis and stability of integration scheme

In order to perform the energetic analysis of scheme (25), we first start by introducing the Hilbert spaces L2 Ωh;0
� �

et
L2 Ωh;1=2
� �

defined as

L2 Ωh;0
� �¼ vh ¼ vj

� �
j ¼ f0;…;NhgAΩh;0;

XNh

j ¼ 0

vj
�� ��2oþ1

8<
:

9=
;; ðA:1aÞ

L2 Ωh;1=2
� �¼ vh ¼ vjþð1=2Þ

� �
j ¼ f0 ,..., Nh �1gAΩh;1=2;

XNh �1

j ¼ 0

vjþð1=2Þ
�� ��2oþ1

8<
:

9=
;; ðA:1bÞ

together with the following associated discrete norms and scalar products:

vh
�� ��

0 ¼
XNx

j ¼ 0

h vj
�� ��2

2
4

3
5
1=2

; vh;whð Þ0 ¼
XNx

j ¼ 0

h vjwj; 8 vh;whð ÞAL2 Ωh;0
� �2

; ðA:2aÞ

vh
�� ��

1=2 ¼
XNx �1

j ¼ 0

h vjþð1=2Þ
�� ��2

2
4

3
5
1=2

; vh;whð Þ1=2 ¼
XNx �1

j ¼ 0

h vjþð1=2Þwjþð1=2Þ; 8 vh;whð ÞAL2 Ωh;1=2
� �2

: ðA:2bÞ

Let us note that Dn

h and Dh are skew-self-adjoint operators, such that

vh;D
n

hwh
� �

0 ¼ � Dhvh;whð Þ1=2; 8 vh;whð ÞAL2 Ωh;0
� �� L2 Ωh;1=2

� �
:

For the sake of simplicity, we perform the stability analysis on numerical schemes with increasing complexity, starting
with a system with one pure gain filter, followed by a system with one-pole filter, before extending it to system (25) of
multiple one-pole filters. Finally, this last energetic result allows us to derive the stability condition of scheme (25).

A.1. System with pure gain filter

We start by performing the energetic analysis of a simplified discrete problem where the material behavior is only
constituted by a pure gain filter (HðzÞ ¼H0), corresponding to a purely elastic case. Eq. (25a) becomes σn

h ¼H0Dhun
h and the

discrete problem associated with this lossless system writes

ρ
unþ1
h �2un

hþun�1
h

Δt2
¼H0D

n

hDhun
hþfnh: ðA:3Þ

Next, the energetic identity is achieved by multiplying (A.3) by unþ1
h �un�1

h

� �
=2Δt, which is the second order centered

approximation of ∂u=∂t at step tn, and integrating it on the whole domain. Using the norms and scalar products previously
introduced yields

ρ
2Δt

unþ1
h �un

h

Δt

�����
�����
2

0

� un
h�un�1

h

Δt

�����
�����
2

0

2
4

3
5þH0 Dhun

h;Dh
unþ1
h �un�1

h

2Δt

 ! !
1=2

¼ fnh;
unþ1
h �un�1

h

2Δt

 !
0

: ðA:4Þ

Then, one obtains the following energetic identity:

Enþð1=2Þ
h �En�ð1=2Þ

h

Δt
¼ fnh;

unþ1
h �un�1

h

2Δt

 !
0

; ðA:5Þ
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where Enþð1=2Þ
h stands for the discrete energy of the system at time step tnþð1=2Þ, which is defined as

Enþð1=2Þ
h ¼ ρ

2
unþ1
h �un

h

Δt

�����
�����
2

0

þH0

2
Dhunþ1

h ;Dhun
h

� �
:

ðA:6Þ

From a mechanical point of view, Enþð1=2Þ
h stands for the classical discrete energy corresponding to a purely elastic behavior

[18], and identity (A.5) simply expresses that its variation between time steps tn�ð1=2Þ and tnþð1=2Þ is equal to the power of
external forces fnh at time step tn.

A.2. System with one-pole filter

Now, let us consider the case of a simplified discrete problem where the material behavior is only constituted by a one-
pole filter:

σnþ1
h ¼H0Dhunþ1

h þpσn
h; ðA:7aÞ

ρ
unþ1
h �2un

hþun�1
h

Δt2
¼Dn

hσ
n
hþfnh: ðA:7bÞ

First of all, we introduce the internal variable snh as

snh ¼ σn
h�

H0

1�p
Dhun

h; ðA:8Þ

in order to rewrite System (A.7) in terms of snh:
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ρ
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h �2un

hþun�1
h

Δt2
¼Dn

hs
n
hþ

H0

1�p
Dn

hDhun
hþfnh: ðA:9bÞ

Next, one multiplies (A.9a) by ðsnþ1
h þsnhÞ=2 and integrates over the whole domain, while processing equilibrium equation

(A.9b) in a similar way as for the lossless System (A.4), which yields:
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� �
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; ðA:10aÞ

ρ
2Δt

unþ1
h �un
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Taking the average of Eq. (A.10a) between time steps tn�ð1=2Þ and tnþð1=2Þ gives
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Besides, noticing that
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Eq. (A.11) may be rewritten as a function of snh;Dh ðunþ1
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The last step consists in substituting Eq. (A.12) into Eq. (A.10b). This yields to the energetic identity associated to the one-
pole system (A.7):

Enþð1=2Þ
h �En�ð1=2Þ

h

Δt
¼ Pn

h�Dn
h; ðA:13Þ

where Ph
n
and Dh

n
are expressed as

Pn
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; ðA:14aÞ
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and the discrete energy Enþð1=2Þ at time step tnþð1=2Þ is now given by

Enþð1=2Þ
h ¼ ρ
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Let us note that the previous energetic identity now involves an additional term Dh

n
which stands for the dissipation

associated with the discrete-time behavior (A.7a).

A.3. System with pure gain and multiple one-pole filters in parallel

The previous energy analysis detailed in Appendices A.1 and A.2 may be easily extended to the more general case
corresponding to a discrete time-domain behavior given by the filter (7). Let us recall the associated discrete explicit
problem as obtained in Section 4.1:

σnþ1
hk ¼H0kDhunþ1

h þpkσn
hk; k¼ f1;…;Nf g; ðA:15aÞ

σnþ1
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hk ; ðA:15bÞ
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Similarly to what has been done in A.2 for a one-pole filter, one starts by defining the internal variables snhk associated to
each one-pole filter Hk:

snhk ¼ σn
hk�

H0k

1�pk
Dhun

h; k¼ f1;…;Nf g; ðA:16Þ

such that System (A.15) becomes
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Thereafter, each Eq. (A.17a) is processed independently for each k in a similar way as done in A.2, while Eq. (A.17b) is
processed in a similar way as done in A.1.

Finally, combining all the terms gives the same type of energetic identity as (A.13)
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where Dh
n
and Enþð1=2Þ now involve the sum of the terms associated to each one-pole filter while Ph

n
remains the same as in

(A.14a):
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A.4. Stability analysis

In order to perform the stability analysis of the scheme (25), we study the conditions on the filter coefficients and
discretization parameters which ensure that the discrete energy Enþð1=2Þ

h and dissipation Dh
n
in Eq. (A.13) remain positive at

each time step. Furthermore, we assume in the following that the condition (6) on the filter poles pk is fulfilled.
First of all, let us rewrite Eq. (A.18b) using the following identities:
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This enables to split the discrete energy Enþð1=2Þ
h at time step tnþð1=2Þ in two distinct terms Enþð1=2Þ

h1 and Enþð1=2Þ
h2 :

Enþð1=2Þ
h ¼ Enþð1=2Þ

h1 þEnþð1=2Þ
h2 ; ðA:19aÞ

which involve mean values and second order centered derivatives at tnþð1=2Þ, respectively:
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Let us note that Eq. (A.19b) on Enþð1=2Þ
h1 may be rewritten using the Z-transform H(z) of Filter (7) as
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:

Then, sufficient conditions in order to ensure the positivity of Enþð1=2Þ
h1 are

Hð1ÞZ0 and H0kpkr0 k¼ f1;…;Nf g; ðA:20Þ

which also ensure the positivity of the dissipation Dh
n
(A.18a).

In order to study Enþð1=2Þ
h2 , assuming that H0k and pk satisfy the previous condition, we start by expanding the following

inequality:
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Then, substituting Eq. (A.21) in Eq. (A.19c) gives a first lower bound for Enþð1=2Þ
h2 as
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Furthermore, let us note the following result for all vhAL2 Ωh;0
� �

:

Dhvh
�� ��2

1=2 ¼
1
h

XNx �1

j ¼ 0

vh2jþ1þvh2j �2vhjþ1vhj
	 


r2
h

XNx �1

j ¼ 0

vh2jþ1þvh2j
	 


r 4

h2
vh
�� ��2

0; ðA:23Þ

which gives
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Using this last result allows us to derive a new lower bound on Enþð1=2Þ
h2 as
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Finally, a sufficient condition that ensure positivity of Enþð1=2Þ
h2 , involving the discretization parameters h and Δt is
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We recognize here a classic CFL condition, which may be rewritten in a more compact way involving transfer function H(z)
as

Δtrh
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ρ
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r
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Appendix B. Reference modal solution

This section describes the modal analysis performed in order to obtain the reference solution used for validating our
numerical results in Section 5.3. To do so, we start again from the equation setting of our model problem and look for an
analytical solution in separated variables form:

uðx; tÞ ¼ XðxÞTðtÞ: ðB:1Þ
First of all, we apply the partial time-domain Fourier transform to Eq. (1), where the volumetric force density has been

chosen as f ðx; tÞ ¼ FðtÞδðx�LÞ ¼ FðtÞδLðxÞ as in Section 5. Using the linear and local property of the constitutive law E yields

�ρω2û x;ωð Þ�En ωð Þ∂
2ûðx;ωÞ
∂x2

¼ δL xð ÞF̂ ωð Þ; ðB:2Þ

where EnðωÞ is the frequency-domain response of operator E, F̂ ðωÞ is the Fourier transform of F(t) and ûðx;ωÞ writes
ûðx;ωÞ ¼ XðxÞT̂ ðωÞ.

Next, substituting the separated form (B.1) in the homogeneous counterpart of Eq. (B.2) gives the classical eigenvalue
problem in terms of the space function X:

∂2XðxÞ
∂x2

þk2X xð Þ ¼ 0:

Solving the previous problem together with the choice of clamped–free boundary conditions given in Eq. (2.1) allows us to
express the following orthonormalized family of functions fXngnANn which is the modal basis of Problem (1):

Xn xð Þ ¼
ffiffiffi
2
L

r
sin knxð Þ with kn ¼ n�1

2

� �
π
L

nANn
� �

; ðB:3Þ

where the usual L2 norm JXn J has been used for normalization:

JXn J ¼
Z L

0
XnðxÞ2 dx

� �1=2
:

Let us recall the fundamental properties of family fXngnANn :

Xn;Xmð Þ ¼ δn;m and
∂2XnðxÞ
∂x2

¼ �k2nXn xð Þ;

where Xn;Xmð Þ denotes the usual L2 scalar product:

Xn;Xmð Þ ¼
Z L

0
XnðxÞXmðxÞ dx:
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We now express the solution ûðx;ωÞ of the space-frequency-domain problem on Basis (B.3):

ûðx;ωÞ ¼
X1
n ¼ 1

XnðxÞT̂ nðωÞ; ðB:4Þ

and substitute this expression into Eq. (B.2):

X1
n ¼ 1

�ρω2þk2nE
nðωÞ

	 

XnðxÞT̂ nðωÞ ¼ δLðxÞF̂ ðωÞ:

Next, the orthogonality property allows us to express T̂ nðωÞ as

T̂ nðωÞ ¼ F̂ ðωÞ
�ρω2þk2nE

nðωÞ
δL;Xn
� �
JXn J2

:

Noting that JXn J2 ¼ 1 and δL;Xn
� �¼ XnðLÞ, the frequency-domain analytical solution of model Problem (1) is given as

follows:

û x;ωð Þ ¼
X1
n ¼ 1

F̂ ðωÞ
�ρω2þk2nE

nðωÞ
Xn Lð ÞXn xð Þ: ðB:5Þ

Finally, in order to compute the reference modal solution used to compare the numerical results of Section 5.3, we set
EnðωÞ ¼HcðωÞ and truncate the infinite sum of Eq. (B.5) to 212 modes, which corresponds to all the modes up to 180 kHz.
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